II.2 Descomposición en factores

Se llaman **factores** o divisores de una expresión algebraica a las expresiones algebraicas que multiplicadas entre sí dan como producto la primera expresión. Por ejemplo, multiplicando a por a+b tenemos: $a(a+b)=a^2+ab$

a y a+b, que multiplicadas entre sí dan como producto a^2+ab , son factores o divisores de a^2+ab .

Factor común

1. Descompóngase en factores $2ax^2 - 4ay^2 + 8a^2x$

El polinomio tiene un factor común en todos sus términos (2a). Aplicando el distributivo:

$$2ax^{2} - 4ay^{2} + 8a^{2}x = (2a)x^{2} - (2a)2y^{2} + (2a)4ax = (2a)(x^{2} - 2y^{2} + 4ax)$$

2. Descomponer en factores $4x^2 + 8x$

Esta expresión tiene un factor común (4x) y puede escribirse como

$$(4x)x + (4x)2 = 4x(x+2)$$

3.
$$a(x+2y)-3(x+2y)$$

Un factor común (x+2y) está distribuido

$$a(x+2y)-3(x+2y) = (x+2y)(a-3)$$

Diferencia de cuadrados

4.
$$4x^2 - 9y^2$$

Esta expresión puede reconocerse como una diferencia de cuadrados $(2x)^2 - (3y)^2$ producto de binomios conjugados.

$$4x^2 - 9y^2 = (2x)^2 - (3y)^2 = (2x + 3y)(2x - 3y)$$

5.
$$27ax^2 - 75a^3$$

Hay un factor distribuido en esta expresión, (3a).

$$27ax^2 - 75a^3 = (3a)(9x^2) - (3a)(25a^2) = 3a(9x^2 - 25a^2)$$

El segundo factor puede reconocerse como una diferencia de cuadrados $(3x)^2 - (5a)^2$, por lo que puede seguirse factorizando,

$$3a(9x^2 - 25a^2) = 3a[(3x)^2 - (5a)^2] = 3a(3x + 5a)(3x - 5a)$$

Trinomios

6.
$$x^2 - 8x - 20$$

Los trinomios son generalmente producto de dos binomios con términos semejantes y su multiplicación puede hacerse por inspección. En este caso, con el 1 como coeficiente de x^2 , la factorización se concreta a buscar dos factores cuyo producto sea -20 y la suma -8; encontramos que -10 y +2 cumplen.

$$x^{2} - 8x + 20 = (x - 10)(x + 2)$$